$Y_{p}(\alpha) J_{q}(k \alpha)=0$ is derived in Appendix 2. Two supplementary tables are included therein. The first table consists of floating-point 14S approximations to the first 20 coefficients in the asymptotic expansion of the phase angle of the Hankel function $H_{p}{ }^{(1)}(x)=J_{p}(x)+i Y_{p}(x)$ when $p=0$ and 1 . The second table gives floating-point 15 S values of the coefficients of the first 15 partial quotients in the continued-fraction expansion of $H_{0}{ }^{(1)}(x)$ and $H_{1}{ }^{(1)}(x)$. This expansion was used by the authors in their evaluation of the Bessel functions $J_{p}(x), Y_{p}(x)(p=0,1)$ for x exceeding 5 ; otherwise the standard power series were used.

An insert sheet clarifies a number of illegibly printed tabular entries and corrects one erroneous table title (on p. 79).

These extensive tables constitute a significant contribution to the relatively limited tabular literature relating to this class of transcendental equations.

J. W. W.

[^0]65[L].-Henry E. Fettis \& James C. Caslin, Jacobian Elliptic Functions for Complex Arguments, ms. of 75 computer sheets deposited in the UMT file.
These tables of the Jacobian elliptic functions $\operatorname{sn}(u+i v)$, $\mathrm{en}(u+i v)$, and $\operatorname{dn}(u+i v)$ consist of 5 D values of these functions for the ranges $u / K=0(0.1) 1$, $v / K^{\prime}=0(0.1) 1$, and $\sin ^{-1} k=5^{\circ}\left(5^{\circ}\right) 80^{\circ}\left(1^{\circ}\right) 89^{\circ}$, where K and K^{\prime} represent the complete elliptic integral of the first kind for modulus k and complementary modulus k^{\prime}, respectively.

These tabular data resulted from a test run of an IBM 1620 subroutine prepared by the authors.

Entries corresponding to a given function and a prescribed value of $\sin ^{-1} k$ are arranged on a single page of computer output. No provision has been made for interpolation in the tables. Beneath the heading of each page appears a 7D approximation to the Jacobi nome, $q=\exp \left(-\pi K^{\prime} / K\right)$, for the corresponding value of k.

These new tables supplement both in precision and in range the published tables of Henderson [1].

> J. W. W.

1. F. M. Henderson, Elliptic Functions with Complex Arguments, The University of Michigan Press, Ann Arbor, 1960. ['See Math. Comp., v. 15, 1961, pp. 95-96, RMT 18.]

66[L].-M. I. Zhurina \& L. N. Karmazina, Tables and Formulae for the Spherical Functions $P_{-1 / 2+i \tau}^{m}(z)$, Pergamon Press, New York, 1966, vii $+107 \mathrm{pp} ., 26 \mathrm{~cm}$. Price $\$ 3.50$.
This is an English translation of the Russian edition previously reviewed in these annals (Math. Comp., v. 18, pp. 521-522, 1964, item b). The former reviewer noted a major error in the table for arc $\cosh x$ at $x=11$ where final 689 should read 699. This error is retained in the English translation. The previous reviewer

[^0]: 1. B. P. Bogert, "Some roots of an equation involving Bessel functions," J. Math. and Phys., v. 30, 1951, pp. 102-105.
 2. M. Abramowitz \& I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series No. 55, Washington, D. C., 1964.
 3. Math. Comp., v. 20, 1966, pp. 469-470, MTE 393.
 4. H. F. BAUER, "Tables of zeros of cross product Bessel functions $J_{p}{ }^{\prime}(\xi) Y_{p}{ }^{\prime}(k \xi)$ $J_{p}{ }^{\prime}(k \xi) Y_{p}{ }^{\prime}(\xi)=0, " M a t h$. Comp., v. 18, 1964, pp. 128-135.
